

Beauveria bassiana – how does the understanding of its endophytic activity and other non-lethal effects on pest species affect its use as a biocontrol agent?

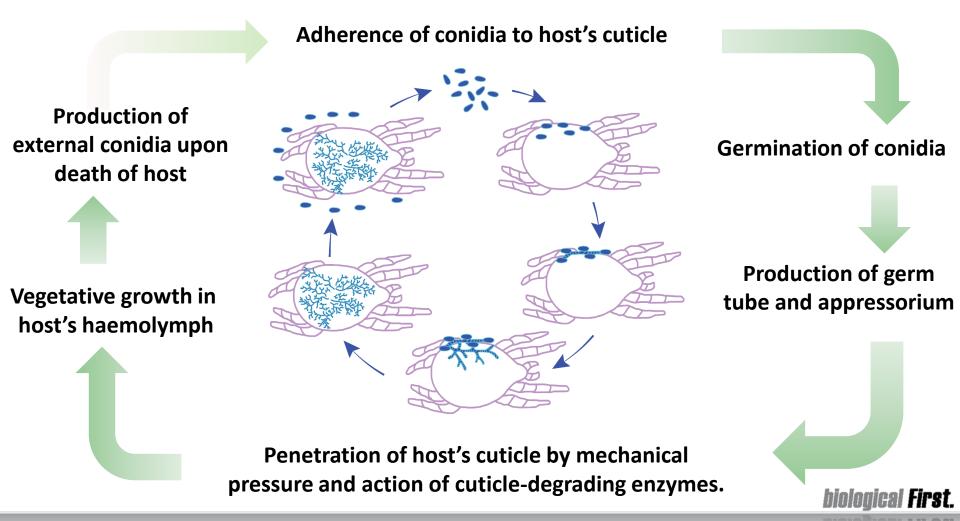
Edith Ladurner – CBC (Europe) S.r.I., BIOGARD Division

Annual Biocontrol Industry Meeting - ABIM 2018

Index

- The strain ATCC 74040 of Beauveria bassiana
- Primary mode of action
- Non-lethal effects
 - Endophytic activity
 - Oviposition deterrent activity
 - Is there more to it than this ?
- Effects on use as biocontrol agent

The strain ATCC 74040 of Beauveria bassiana


The strain ATCC 74040

- Obtained from cotton boll weevil, Anthonomus grandis, at USDA-ARS Crop Insect Research Center, Texas, USA (not genetically modified)
- Owner of Intellectual property rights: CBC (Europe) S.r.l.
- Annex I inclusion (Reg. EU 540/2011): 2009
- Formulated product: Naturalis
- Formulation: **OD (oil dispersion)**
- Concentration: 0,0185% w/w (2.3 x 10⁷ CFU/mL)
- Hazard symbol: not classified (NC)
- Pre-harvest interval (PHI): 0 days and MRL not requested
- Currently registered in 16 EU countries and 4 non-EU countries

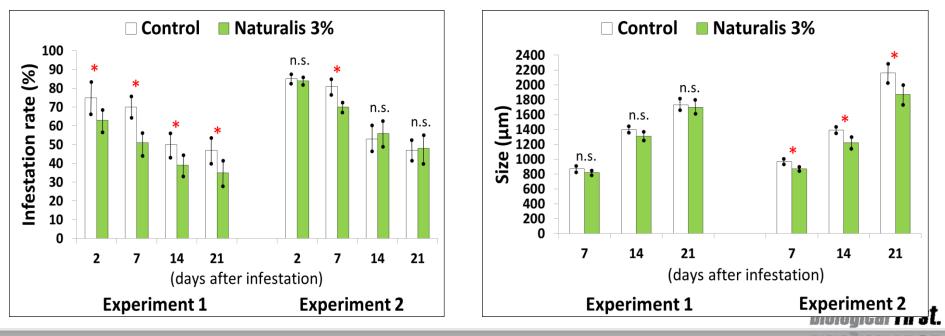
Primary mode of action

Primary mode of action

Endophytic activity

Putative endophytic establishment & endophytic activity:

against grape mealybug (Planococcus ficus) on grapevine

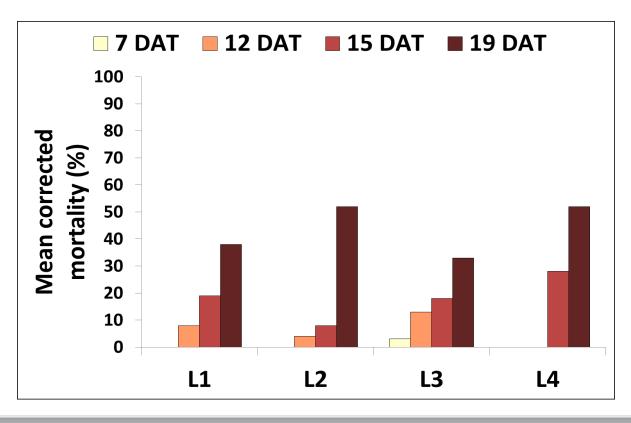


Endophytic activity

Grape mealybug on grapevine - observed effects:

- Reduced infestation rate
- Reduced size increase

of grape mealybug larvae in laboratory bioassays on first *B. bassiana*-treated, and then surface-sterilized leaves *versus* control leaves.



Rondot & Reineke (2016)

Endophytic activity

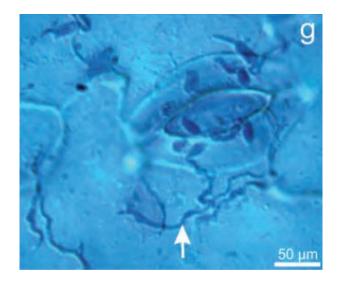
Tomato leaf miner on tomato - observed effects:

• 33–52% corrected mortality for all larval stages after 19 days of feeding on first *B. bassiana*-treated, and then surface-sterilized leaves.

Concerns & doubts related to:

- Tested rates. 3–244 times higher than max. authorized field rates.
 Economically feasible?
- Test conditions in bioassays: 21-25°C and 50-70% RH. Do these conditions resemble field conditions?
- Efficacy. Overall low efficacy (0-27% against Grape mealybug; 33–52% against *T. absoluta*: after 19 days of feeding, but only 0-13% after 12 days of feeding). NB: total duration of larval development of *T. absoluta*: approx. 10–12 days at 25°C.
- Endophytic establishment on leaves. Notwithstanding the high application rates, low on grapevine (0–30% in field), better on tomato (>60% in lab).
- What about other plant parts?
- Other varieties?

... last, but not least: can we be sure that *B. bassiana* actually endophytically colonizes leaves?

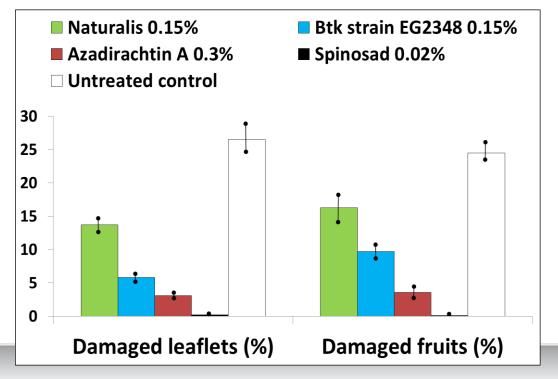

Endophytic establishment of strain ATCC 74040

Endophytic establishment in leaves

 Light microscopic studies failed to show systemic endophytic growth of inoculated entomopathogenic fungi, including strain ATTC 74040, in leaves of different host plants (Ullrich et al., 2017; Koch et al., 2018).

The Authors conclude that:

- reason for inability to grow endophytically is not known;
- specific combinations of fungal strains and host cultivars may have given other results;
- the results indicate a saprotrophic rather than an endophytic life style of the fungi studied, strain ATCC 74040 included.



Efficacy of <u>epiphytic</u> *B. bassiana* in bioassays

 92-100% after 15 days of feeding, 3-66% after 7 days of feeding (Klieber & Reineke, 2015)

Efficacy of epiphytic B. bassiana in field trials

Mean efficacy of Naturalis®

approx. 50% in leaf damage reductionapprox. 35% in fruit damage reduction

Mean efficacy of reference products:

78-99% in leaf damage reduction

60-99% in fruit damage reduction

GEP trial Eboli, Italy, 2010 Tested rate: Naturalis at 0.15% (1.5 L/Ha); 4 appl.s at weekly intervals/treatment Final assessment: 7 DAT4

st.

Efficacy of epiphytic B. bassiana in bios

92-100% after 15 days of feed ۲ Endophytic activity & effect on use Reineke, 2015)

Efficacy of et

30

25

20

15

10

5

0

Naturalis 0.15% Azadirachtin A 0. Untreated control

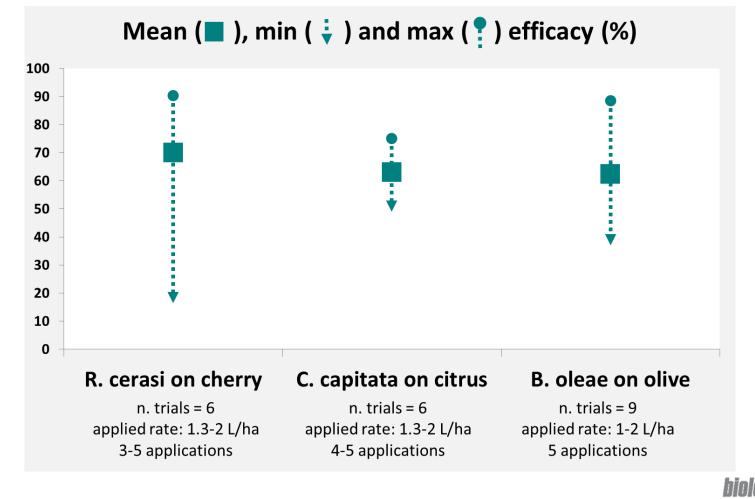
as biocontrol agent: up to now no effect! Damaged leaflets (%) Damaged fruits (%)

ding (Klieber &

aturalis® af damage reduction rruit damage reduction

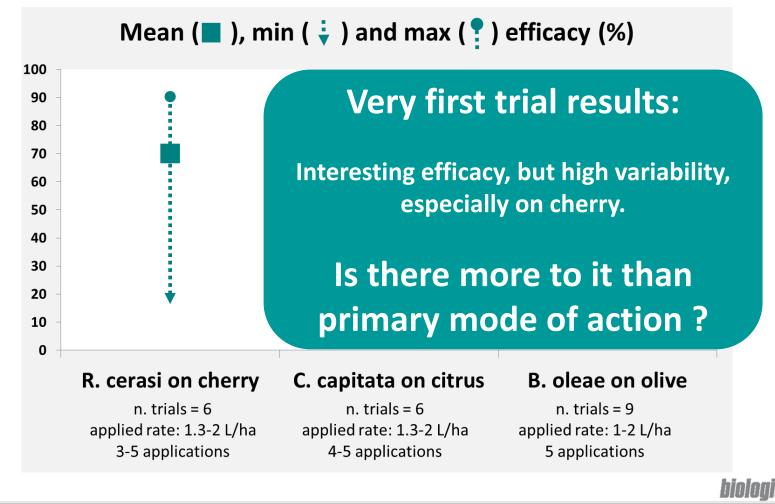
st.

wean efficacy of reference products:


78-99% in leaf damage reduction

60-99% in fruit damage reduction

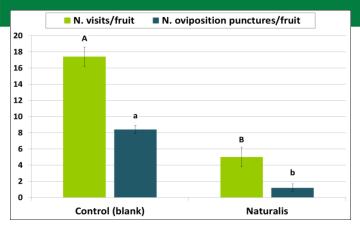
GEP trial Eboli, Italy, 2010 Tested rate: Naturalis at 0.15% (1.5 L/Ha); 4 appl.s at weekly intervals/treatment Final assessment: 7 DAT4

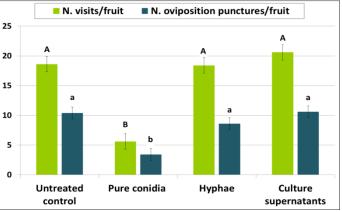

Oviposition-deterrent activity on fruit flies

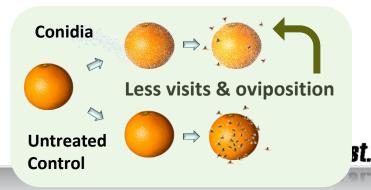
Efficacy of *B. bassiana* strain ATCC 74040 against fruit flies

nungicai Fii S

Efficacy of *B. bassiana* strain ATCC 74040 against fruit flies


Oviposition-deterrent activity on fruit flies


Oviposition-deterrent activity


- Oviposition-deterrent effect of formulated product and pure conidia suspension.
- Intact conidia, and not other fungal fractions, seem to be responsible for observed effect.
- Identification of two hydrophobins, small proteins known to form a hydrophobic coating (rodlet layer) on conidia of strain ATCC 74040.
- Hydrophobic layer of conidia on fruit surface seems to impair ability of fruit flies to detect fruit-derived stimuli.

NB: the lower the pest pressure, the higher the efficacy. Under conditions of too high a pest pressure, females will eventually lay eggs also on treated fruits.

Ortu et al. (2011), Ruiu et al. (2013)

• Past recommendations on cherry :

1st **application** at **beginning of fruit colouring** (BBCH 81). Under Southern EU zone climatic conditions fruit colouring usually starts 10-14 days after beginning of flight of *R. cerasi*, **but may also start later, when flight has already started**.

R. cerasi adults go through a maturation period of gonads of 6-13 days during which they need to feed on carbohydrates, proteins and water. **Once gonads are mature, females will start laying eggs, even if fruit colouring has not yet started**.

• Updated recommendations on cherry :

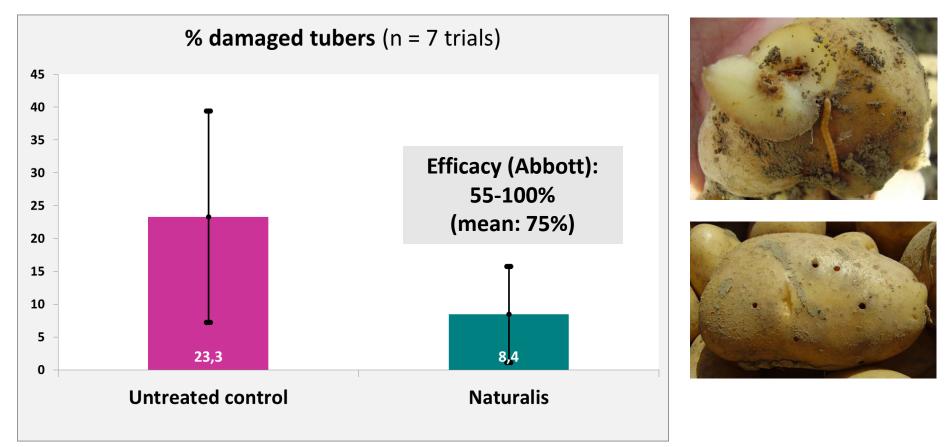
1st application approximately 1 week after beginning of flight, irrespective of BBCH.

Oviposition-deterrent activity on fruit flies

- Past recommendations on cherry :
- 1st application at beginning of fruit Under Southern EU zone c usually starts 101 but may also si

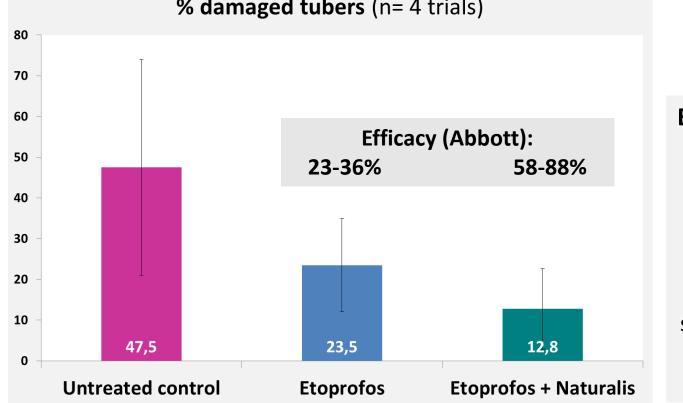
R. cerasi adults g 6-13 days during v proteins and water start laying eggs, ev

Oviposition-deterrent activity & effect on use as biocontrol agent: improved and more consistent efficacy thanks to appriopriate instructions for use!


- Updated recomme on cherry :
- 1st application approximately 1 week after beginning of flight, irrespective of BBCH.

Is there more to it than this?

biological First.


Activity of strain ATCC 74040 against wireworms on potato

Naturalis (3 L/ha) applied at sowing into the furrow and around the tubers.

Ladurner et al. (2009)

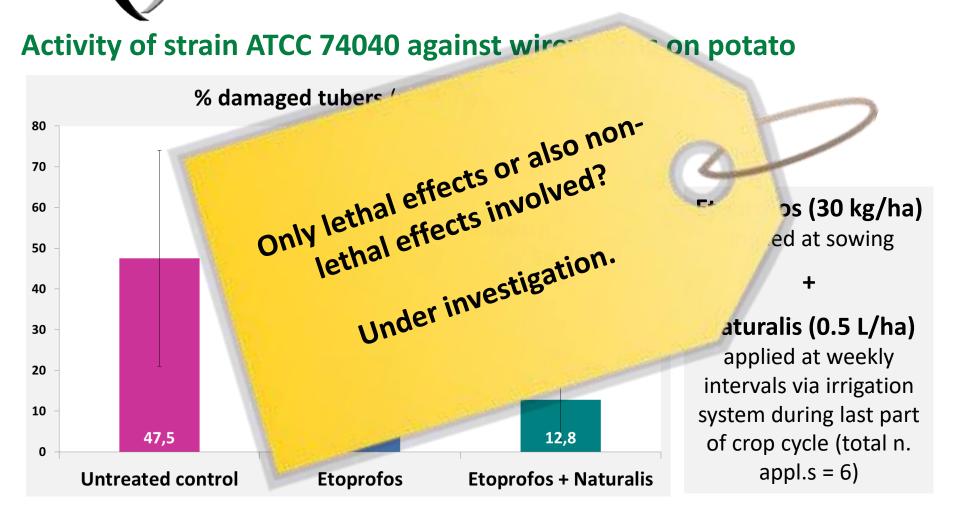
Activity of strain ATCC 74040 against wireworms on potato

% damaged tubers (n= 4 trials)

Etoprofos (30 kg/ha)

applied at sowing

+


Naturalis (0.5 L/ha)

applied at weekly intervals via irrigation system during last part of crop cycle (total n. appl.s = 6)

Naturalis applied via irrigation system during last part of crop cycle.

Bariselli et al. (2018)

Is there more to it than this?

Naturalis applied via irrigation system during last part of crop cycle.

Bariselli et al. (2018)

Conclusions

- **Question:** does the understanding of its non-lethal effects affect the use of *Beauveria bassiana* as a biocontrol agent?
- Answer: it definitely does (see oviposition-deterrent activity), but only if application conditions are feasible under practical cultivation conditions!
- To keep in mind: in order to gain insight into potential non-lethal effects of microbial control agents, basic scientific research is of sound importance, but ...

any published study on findings concerning the mode of action of a microbial control agent automatically translates to additional data and/or information requirements by competent regulatory authorities (EFSA, etc.).

- Bariselli et al. (2018) Atti Giornate Fitopatologiche 1, 151-154.
- Klieber & Reineke (2015) J. Appl. Entom., pp. 10, doi: 10.1111/jen.12287
- Ladurner et al. (2009) IOBC/wprs Bulletin 45, 445-448.
- Rondot & Reineke (2016) Biological Control, pp. 29, doi: http://dx.doi.org/10.1016/j.biocontrol.2016.10.006
- Ortu et al. (2009) Bulletin of Insectology 62 (2), 245-252, 2009
- Ortu et al. (2011) Informatore Agrario 32, 59-62.
- Ruiu et al. (2013) IOBC/wprs Bulletin 90, 43-46.
- Ullrich et al. (2017) Journal f
 ür Kulturpflanzen 69 (9), 291–302, doi: 10.1399/JFK.2017.09.02
- Koch et al. (2018) Journal f
 ür Kulturpflanzen 70 (3), 95–107, doi: 10.1399/JKI.2018.03.02

Acknowledgements

1 (min- 200-5 4/2 5177 81 29

Special thanks are due to:

- the Authors of the cited papers
- the organizers
- you for your attention!

